Appendix 7

Correspondence to EPA

(Total No. of pages including blank pages = 22)

Teralba Quarry

2014 ANNUAL REVIEW

Report No. 559/38 Appendix 7

This page has intentionally been left blank

Report No. 559/38 Appendix 7

Regional Manager Environmental Protection Authority PO Box 488G Newcastle NSW 2300

1 February 2015.

Attention: Mr. Mark Hartwell

Re: EPL 536 - Request for Licence Variation

On the 28th of July 2014, I wrote to you formally requesting a licence variation to EPL 536 that will result in a licence to which Metromix can comply. To date we have not received any correspondence in relation to our request. The letter may simply have been misplaced or not even received.

I have attached a copy of the letter dated the 28th of July 2014.

Could you be kind enough to acknowledge receipt of this letter by emailing me on <u>BillS@metromix.com.au</u>.

Could you please review our request and should we need to visit and explain things in person, please feel free to do so by contacting me on 0418 479 087.

Yours Faithfully

W Sanderson Manager Quarries

Metromix Pty Ltd ACN 002 886 839 ABN 39 002 886 839 HEAD OFFICE Level 4, 107 Phillip St Parramatta NSW 2150 PO Box 1295 Parramatta 2124 P 02 9849 7400

F 02 9635 4816

E info@metromix.com.au

W www.metromix.com.au

2014 ANNUAL REVIEW

Report No. 559/38 Appendix 7

Regional Manager - Hunter **Environment Protection Authority** PO Box 488G NEWCASTLE. NSW, 2300

Attention: Mr Mark Hartwell

Re: EPL 536 - Request for Licence Variation

I am writing to formally request a licence variation to EPL 536 that will result in a licence to which our Company can readily comply. This request has been assembled following a detailed review of the recently updated licence issued following the receipt of Project Approval to extend the operational life of the Teralba Quarry.

INTRODUCTION

The information contained within this document and attachments has been compiled to provide the EPA with sufficient information to vary EPL 536. Metromix received Project Approval 10_0183 on 22 February 2013 to continue to undertake extraction and processing operations at the Teralba Quarry in accordance with activities outlined within the document entitled 'Environmental Assessment for the Teralba Quarry Extensions' (RWC, 2011).

As part of various PA10_0183 conditions, Metromix's existing EPL for the Quarry required a variation to reflect the new approved activities. Meetings between Metromix and the EPA were undertaken throughout 2012 and 2013, resulting in EPL 536 being varied and subsequently issued on 2 July 2014.

Following a detailed review of the 2 July 2014 version of EPL 536, including the additional or varied conditions, Metromix respectfully requests that the following conditions are varied, based upon the provided justifications outlined within the following sections.

MAP OF MONITORING POINTS

In satisfaction of Condition M4.3, I have attached a copy of a plan entitled "Metromix Quarry Teralba Environmental Monitoring Points" updated on 9 May 2014 and referred to as "Revision D". A previous version of this figure (Revision C) was provided to the EPA on 14 April 2014, with Revision D now showing the location of the operating weather station. As a consequence of this document being submitted to the EPA, it is respectfully requested that Condition M4.3 is removed.

Metromix Pty Ltd

HEAD OFFICE Level 4, 107 Phillip St Parramatta NSW 2150 PO Box 1295 Parramatta 2124

P 02 9849 7400 F 02 9635 4816

E info@metromix.com.au

W www.metromix.com.au

Report No. 559/38 Appendix 7

NOISE CONDITIONS

Condition L5.2

Condition L5.2 nominates that noise monitoring is to be undertaken at EPL Points 12 to 18 for a variety of parameters <u>twice yearly</u>. This measurement frequency is not aligned with that prescribed in Condition M9.1 in which measurements are to be undertaken yearly (as a minimum frequency).

It is therefore requested that monitoring frequencies in *Condition L5.2* are aligned with *Condition M9.1*, by undertaking noise monitoring once yearly, unless a substantiated complaint is made by a resident in which noise monitoring would be undertaken twice yearly until either the EPA is satisfied that noise has been successfully mitigated.

Furthermore, it is also requested that *Condition L5.2* is modified to remove EPL noise monitoring Points 14 and 17. Metromix has acquired, as prescribed in the note associated with *Condition L5.2*, agreements with the landowners of EPL monitoring Points 14 and 17, with these signed agreements provided at Attachment 1 to this document.

It is therefore requested that EPL 536 is updated to include only the relevant EPL noise monitoring locations.

In light of the requested variation above, it would also be necessary to vary *Condition R4.2* by removing "the biannual noise monitoring" and replacing it with "each period of noise monitoring". This variation could then provide one or more monitoring events in one year.

SURFACE WATER CONDITIONS

Conditions M2.3, M2.4 and U1.1

Condition M2.4 and the note associated with Condition U1.1 outlines that Conductivity, Oil and Grease, Total Suspended Solids and pH are required to be monitored at EPL Point 4 at a 'Special Frequency 1', i.e. in the event of a discharge, water must be collected "within 8 hours of commencing discharge and weekly thereafter during discharge". As outlined within RWC (2012) and within the approved Teralba Quarry Water Management Plan, EPL Point 4 is a dam that collects runoff from an unused mine adit that is continuously discharging water to the surface water system as the result of groundwater flowing from the underground Westside Colliery and Northern Colliery coal workings.

Metromix has little influence on the volume of water that discharges from the mine adit. Rather, the flow largely reflects the inflow of rainfall/seepage into the two collieries. Metromix's is only contribution to the flow from the mine adit is the limited seepage that occurs from the floor of the silt cells, i.e. in addition to the infiltration from the land surface within the Quarry Site (which would occur even without the quarry being present).

2

Teralba Quarry

2014 ANNUAL REVIEW Report No. 559/38 Appendix 7

Based upon this, Metromix would be deemed to be non-compliant with Condition U2.3, 2.4 and Condition U1.1 if water sampling was not undertaken weekly at EPL Point 4 as water is continuously flowing from the mine adit. Based upon the consolidated surface water quality information (see attached Interim Report – Attachment 2), it is requested that EPL Point 4 is removed from these conditions as the frequency for surface water monitoring proposed is considered excessive and inappropriate. Since data recording the quality of water from the mine adit has always been undertaken at monthly intervals and it is considered appropriate that this frequency of sampling continue.

Further to the above, it is also requested that 'Oil and Grease' specified within *Condition U1.1* is determined initially by a visual inspection at the time of water sampling. Should the presence of oil and/or grease be observed, then a sample is taken. This visual analysis would be conducted of both the water body in which the sample if being collected from and by collecting water using a glass beaker and viewing the side profile or the water column for any traces of oil and/or grease. If oil and grease is identified, the water sample would be sent to the laboratory for detailed analysis.

Report No. 559/38 Appendix 7

Condition U1.2

In satisfaction of Condition U1.2, I have attached a copy of a document entitled 'Initial Report for Condition U1.1 And U1.2 For Environment Protection Licence 536' (the 'Initial Report') which provides the consolidated results of surface water monitoring undertaken at EPL Points 4 & 5 between September 2013 and June 2014. As a result of the commentary included in this report, it is respectfully requested that Condition U1.2 be varied to remove the metal analytes identified within the attached Initial Report from the remaining 18 month detailed surface water monitoring program, as they have either not been detected or were consistently below detection limits/guideline levels at both EPL Points 4 and 5. We recognise that the monitoring of a range of more meaningful analytes should continue to be analysed for the remaining 18 months of the 24 month monitoring period proposed in Condition U1.2.

Condition L2.5

The requirement nominated in Condition L2.5 is not practical. Such a design feature of these dams was never contemplated. It is our considered opinion that the reference to a 1 in 50 years ARI in this condition was mistakenly adopted by the EPA from the design notes in the Water Management Plan which notes 'all dams have <u>spillways</u> designed for at least 50 year average return interval'. This is a common feature in dam design whereby the spillway has a design criteria is much higher than that required for settlement of collected sediment. It is therefore, respectfully requested that Condition L2.5 is removed in full. The removal of this condition would not compromise water quality as we are required to satisfy the limits set in Condition L2.4.

Condition L3.1

It is respectfully requested that *Condition L3.1* is varied to remove reference to EPL Point 4 (Mine Adit Dam) as is not Metromix's responsibility as outlined within the Initial Report. As previously advised in our discussions held on 16 July 2013 with EPA representatives Ms Gallagher and Mr Rutherford, and in our correspondence to the EPA on 20 February 2014, Metromix does not have any control on the total rate of discharge from the underground mine adit.

Further, it is also requested that *Condition L3.1* is varied for EPL Point 5 from 25 <u>kilolitres</u> per day to 25 <u>megalitres</u> per day. The unit of measure is incorrect. The correct unit of measure (megalitres per day) was included in the Site Water Balance in RWC 2011559

(replaced in Figure 7.5 of the Water Management Plan – see Initial Report – Page 1) and has been the unit of measure for EPL 3139 since 2000.

I trust the information provided in support of our request for the various variations is sufficiently clear to enable a varied licence to be issued which is practical and feasible for our Company to comply with.

Should you require any further information or wish to discuss any for the information supplied, please don't hesitate to contact either Rob Corkery (9985 8511) or myself on 4950 6640.

Yours Faithfully

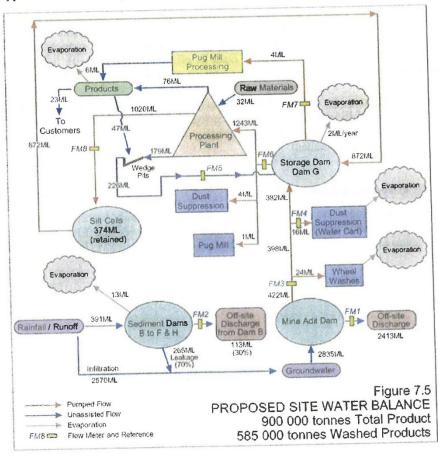
Manager Quarries

28/7/14

Attachments

Attachment 1 – Signed Landowner Agreements Attachment 2 – Interim Report

4



INITIAL REPORT FOR CONDITION U1.1 AND U1.2 FOR ENVIRONMENT PROTECTION LICENCE 536

INTRODUCTION

In accordance with *Conditions U1.1* and *U1.2* of Environment Protection Licence (EPL) 536 (updated 2 July 2014), the following information provides the consolidated results of surface water monitoring (**Tables A, B and C**) undertaken at EPL Points 4 & 5 (see **Figure 1**) for the Teralba Quarry between September 2013 and June 2014 (the "monitoring period")¹. This information has been collated and presented to the EPA in accordance with *Condition U1.2*, to present the results of surface water monitoring (arising from the Mine Adit Dam within the Teralba Quarry) and ultimately provide an understanding of the local surface water environment and interactions with surface water quality as a result of activities within the Teralba Quarry.

The Teralba Quarry utilises water from the Mine Adit Dam as a water source for washing purposes and other related activities such as wheel washing and dust control. This extraction of this water is licenced by NOW (Licence No. 20BL173206) to extract a maximum of 1 407ML per year for dewatering and "Industrial – Sand and Gravel" uses. Figure 7.5 reproduces the Site Water Balance that was originally included within the Environmental Assessment and also included (with minor modifications) within subsequent approved Water Management Plan.

¹ It is noted that *Condition U1* only requires 6 months of data for comparison purposes, however, 10 months of data has been provided due to periods of no discharges at EPL Point 5 and to account for omission of some analytes from the laboratory results.

Report No. 559/38 Appendix 7

Figure 7.5 highlights that of the total 2 835ML of water that flows into the Mine Adit Dam from the underground coal working per year, Metromix utilises in the order of 422ML per year.

SURFACE WATER MONITORING LOCATION CONTEXT

EPL Point 4 is located at a historic and flooded Mine Adit Dam that was originally associated with the Oceanic Coal's Westside Colliery (Teralba and Northern Extended Collieries) and Coal and Allied's Northern Colliery (formerly known as Rhondda Colliery) that targeted the Fassifern Seam and Great Northern Coal Seam. The Westside Colliery is in fact connected underground with other nearby mines such as Rhondda Colliery, the owners of which (Coal and Allied) hold an EPL 3139 requiring the monitoring of the discharge from the Mine Adit Dam until early 2013.

The Mine Adit Dam continuously discharges water from the underground voids (groundwater) to the atsurface Mine Adit Dam that flows eastwards approximately 40m along an unnamed watercourse from the eastern boundary of the Teralba Quarry towards Lake Macquarie. Groundwater from the underground coal workings is referred to as surface water once reaching the Mine Adit Dam. The water in the Mine Adit Dam is either pumped to Dam G for Metromix's use or allowed to flow off site.

EPL Point 5 is located at the end of a pipe from Dam B (see Figure 1) which the overflow point from the surface water management system on the southern side of Rhondda Road. No surface water from the Quarry is able to flow into the Mine Adit Dam although it is recognised that a very small proportion of the groundwater flow entering the Mine Adit Dam is seepage from the Southern Extraction Area and the current silt cells. All surface water within the southern quarry catchment is collected and directed through a series of on-site sediment dams (Dam F to Dam B) and is discharged into the unnamed drainage channel via an outlet pipe from Dam B, effectively mixing with the Mine Adit Dam water before flowing eastwards approximately 2km until its confluence with Lake Macquarie.

The Teralba Quarry Extensions Environmental Assessment and related Teralba Quarry Water Management Plan fully outline the context, background and interactions between the Teralba Quarry and Rhondda Colliery, along with their differing water catchments with no additional information provided further in this document.

SURFACE WATER ANALYTES

This document includes the analysis of the surface water quality monitoring results for the analytes identified in *Condition U1* (reproduced in **Table 1**), to provide the EPA with an understanding of baseline levels and the interaction of surface water quality between EPL Point 4 and EPL Point 5.

Table 1 EPL Point 4 & 5 Analytes Monitored

			General Analytes		4.5000000000000000000000000000000000000
•	рН	Total Suspended Solids (TSS)	Electrical Condu	ctivity	Oil and Grease ²
345		A STATE OF THE REAL PROPERTY.	Metal Analytes		· · · · · · · · · · · · · · · · · · ·
	Aluminium ¹	Antimony ¹	Arsenic ¹	Barium ¹	 Beryllium¹
-	Boron ¹	Cadmium ¹	Chromium ¹	Cobalt ¹	• Copper ¹
•	Iron ¹	• Lead ¹	Magnesium ¹	Mercury ¹	Molybdenum
	Nickel ¹	• Selenium ¹	Silica [†] (Silicon as SIO ₂	• Tin ¹	 Titanium¹
0	Vanadium ¹	• Zinc ¹	Calcium	Nitrogen (ammonia) ²	Phosphorus ² (as P)
•	Potassium ²	Sulphur ² (Sulfate as SO ⁴)	• Lithium ²	Manganese ¹	• Silver ²

Indicates analytes monitored as 'total' (unfiltered) and 'dissolved' (filtered)

For the purposes of the surface water analysis, key analytes that highlight the differences and/or similarities of surface water quality between the two EPL points have been chosen for the focus of this investigation and include the following.

- pH
- Electrical Conductivity
- Total Suspended Solid
- Aluminium

- Iron
- Manganese

The metal analytes have been chosen as they highlight the presence of clay/insoluble materials in the water column between the EPL Points 4 & 5. The remaining chemical analytes have not been analysed in detail as they either displayed similar monitoring results between EPL Points 4 & 5 or similar conclusions would be appropriate to the analysis of aluminium, iron and manganese.

SURFACE WATER ANALYSES

As outlined previously, the attached **Tables A, B and C** contain the complete records of consolidated surface water data for EPL Points 4 & 5, with focussed analysis undertaken on the seven (7) filtered and unfiltered analytes identified above within the monitoring period, chosen as they describe the similarities and differences between the two catchments, i.e. underground mine source and the section of the Teralba Ouarry south of Rhondda Road.

pH

pH levels have been measured from unfiltered samples between November 2013 and December 2013, with pH only being measured following filtering for the remainder of the monitoring period (excluding no discharge periods).

Indicates that the nominated analytes were not initially tested within the monitoring period but will be included in all subsequent monitoring events.

Report No. 559/38 Appendix 7

It is evident that pH levels from EPL Point 4 are either the same or display slightly lower pH levels than those measured at EPL Point 5 (average of 7.5 and 7.8 respectively), indicating that pH levels are not impacted upon by quarrying operations. It should be noted that all pH levels monitored were within the limits nominated in *Condition L2.4* of EPL 536.

Electrical Conductivity (EC)

EC has been measured from unfiltered samples between November 2013 and February 2014, with EC only being measured following filtering for the remainder of the monitoring period being March 2014 – June 2014 (excluding no discharge periods).

The results indicate that EC levels are consistently higher at EPL Point 4 than those measured at EPL Point 5, indicating that the water drawn from the Mine Adit Dam for use in the quarry's operation is diluted with the surface water runoff within the section of the quarry south of Rhondda Road.

Minor exceedances of the ANZECC Freshwater Guideline for 90% Protection 2000 (ANZECC, 2000) (2200 μ S/cm) occurred in October 2013 (2410 μ S/cm) and November 2013 (2210 μ S/cm) at EPL Point 4. It is noted that these EC levels are noticeably lower than those recorded by Coal and Allied between 1998 and 2007 when EC levels averaged approximately 7700 μ S/cm.

Total Suspended Solids (TSS)

TSS has been measured on unfiltered samples between November 2013 and July 2014 (excluding no discharge periods).

The results indicate that TSS from EPL Point 4 displayed generally higher TSS levels than those measured at EPL Point 5, with the exception of April 2014, indicating that TSS levels are not negatively impacted upon as the result of the ongoing operation of the Teralba Quarry.

Aluminium and Iron

The presence of aluminium and iron indicates the likely presence of clays (as aluminium/iron silicates or aluminium/iron oxides or hydroxides) within the unfiltered monitoring samples. Conversely, the lack of aluminium or iron within the water samples following filtering confirms that the water column contains only small amounts of aluminium or iron itself due its presence within the clay. This has been confirmed with no filtered results displaying aluminium concentrations exceeding 0.01mg/L or over from both EPL Points and significantly lower concentrations of iron from filtered measurements then compared to unfiltered measurements.

The higher concentrations of aluminium within unfiltered EPL Point 5 results (November 2013, April 2014 and May 2014) indicate that relatively higher amounts of clay are recorded within the unfiltered water column, likely the result of ongoing quarry operations. It should be noted however, that all aluminium concentrations were below ANZECC (2000) guidelines.

The equal to or higher prevalence of iron within unfiltered EPL Point 5 results throughout the monitoring period, also supports the conclusion determined by the aluminium analysis. It should be noted that iron was recorded in excess of the criteria level of 0.3 mg/L at both EPL Point 4 (December 2013 - February 2014, April 2014 and May 2014) and EPL Point 5 (November 2013 and April 2014). The presence of elevated iron levels at EPL Point 4 reflects that iron is present at elevated levels either naturally or from an up-stream presence (i.e. unrelated to quarrying activities).

Manganese

The higher concentrations of manganese from EPL Point 4 in both filtered and unfiltered results (November 2013, December 2013 and April 2014 - May 2014), with the exception of March 2014, indicates that the elevated levels of manganese are not caused by quarrying operations as EPL Point 5 monitoring results display significantly lower manganese concentrations.

The majority of manganese concentrations were higher than ANZECC (2000) guideline concentrations of 0.1mg/L, with EPL Point 4 averaging 0.20mg/L (unfiltered) and 0.17 (filtered). EPL Point 5 manganese concentrations averaged 0.41mg/L (unfiltered) and 0.43mg/L (unfiltered) but included the anomalous concentrations of 1.8mg/L (filtered) and 1.67mg/L (unfiltered) in March 2014. Overall, manganese consistently exceeded ANZECC (2000) guideline levels at both EPL Points with higher levels recorded in the unfiltered samples.

CONCLUSION

Overall, the extensive surface water monitoring program undertaken throughout the monitoring period and in accordance with EPL 526 Condition U1, has determined that surface water downstream of the quarry (EPL 5) is not significantly different to the water flowing from the mine adit (EPL 4) with elevated analytes identified as occurring naturally or derived from the water from the mine adit.

It is therefore respectfully requested that Condition U1.2 be varied to remove the following metal analytes from the surface water monitoring program as they have not been detected or were consistently below detection limits/ ANZECC (2000) guideline levels at both EPL Points 4 and 5.

•	Antimony Boron Copper Mercury	•	Arsenic Cadmium Lead Molybdenum	•	Barium Calcium Lithium Nickel	•	Beryllium Cobalt Magnesium Phosphorous Sulfate (as S)
	Potassium	•	Silicon	٠	Silver	•	Sulfate (as S)
•	Tin	•	Titanium	•	Vanadium	•	Zinc

Metromix would continue to monitor the following analytes at EPL Points 4 & 5 (total and dissolved where required) for a combined total of 24 months (concluding September 2015) as outlined in Condition U1.3.

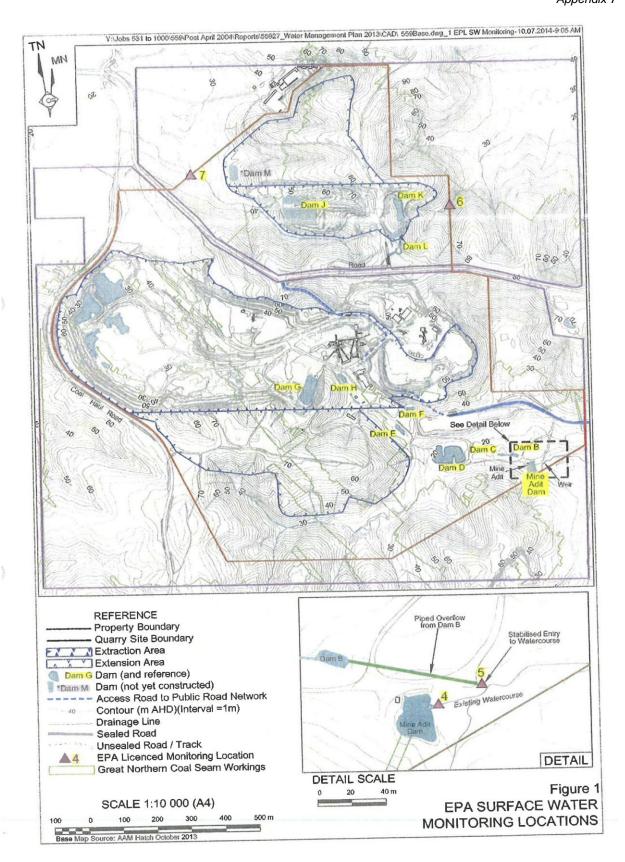
٠	рН	•	Electrical Conductivity	•	Total Suspended Solids	•	Aluminium
•	Nitrogen (ammonia)	•	Chromium	•	Copper	0	Iron
•	Manganese	•	Selenium	•	Sulfur as SO₄		

Whilst not defined within EPL 526 Condition U1.1, Metromix has been monitoring for Sulfur as both Sulfur (as S) and Sulfur (as SO₄) during the monitoring period. It is proposed that from July onwards, Sulfur would only be monitored for Sulfur (as SO₄), as Sulfate is the more meaningful analyte. It is also proposed that laboratory monitoring for oil and grease would only be undertaken following the field identification of any visible oil and/or grease slicks within the water body at the time of collection.

2014 ANNUAL REVIEW

Report No. 559/38 Appendix 7

Teralba Quarry


I trust that the information presented is sufficient for EPA's review, however, should you have any questions, please don't hesitate to contact the undersigned.

> Rob Corkery Principal/Managing Director

Attached:

Figure 1 - EPA Surface Water Monitoring Locations

Table A - EPL Point 4 Monitoring Results Table B – EPL Point 5 Monitoring Results
Table C – EPL Point 4 & 5 Monitoring Results Comparison

Report No. 559/38

Appendix 7

Teralba Quarry

TABLE A
TERALBA QUARRY
September 2013 – June 2014 Surface Water Analysis – EPL 536 Monitoring Point 4 (Overflow from Mine Adit Dam)

						20	9049															
			September 2013	or 2013	Octobe	October 2843		Mounthon 2042		-						20	2014					
					2000	-	TI DARWING	6102 50	December 2013	er 2013	January 2014	y 2014	February 2014	y 2014	March 2814		April 2014	2014	May 2014	1 770	Lanc Sout	100
Sample	nll.	Gui delines*	Total (Unfiltered)	Dissolved (Filtered)	Total (Unfiltered)	Dissolved (Filtered)	Total (Unfiltered)	Dissolved (Filtered)	Fotal (Unfiltered)	Dissalved	Total	Dissolved	Total		Total	1	Total	Dissolved	Total	Dissolved	Total	Dissolved
Hd	pH Unit	6.5 to 8.5 units	7.7	GW	10	300	1			100	for much		(Darmtered)	(Filtered) ((Unfiltered)	(Filtered)	(Unfiltered)	(Filtered) ((Unfiltered)	(Filtered)	(Unfiltered)	(Filtered)
Conductivity		125 - 2268	2180	CN	2410	ON ON	27.00	GN	7.1	QN	7.7	ND I	7.48	QN	7.32	MD	7.34	GN	75.0		00.0	I
755	max.	<50	4	2	0747	7361	2220	WD	1890	QN	1940	QN	2170	ON	2100	GN	2010	074	4040	NO.	6/1	QN
Atuminium	mg/L	0.20	Qre	NIC	000	000	\$	<5	26	526	9	9	45	45	8	GN	1	200	1050	au .	1960	ON
Ammonia as N	mon.	100	000	000	2000	0.02	9.05	<0.01	0.11	<0.01	0.14	<0.01	20.0	<0.01	0.08	<0.00	200	OH C		UN	9	ND
Antimony	1	100	0000	90.03	ON.	ON	<0.03	<0.03	<0.03	<0.01	<0.01	<0.01	<0.00	-0.03	000	70.00	000	5000	0.07	<0.03	200	10.05
Arcopin	1	NA C	ON	OM	<0.003	<0.001	<0.000	<0.003	+:D:003	<0.001	50.003	20,000	2000	2000	1000	an	<0.03	ON	MD	0.02	<0.01	QN
Declare	mgar	90.0	ON	ON	0.902	0.001	0 001	0.001	0.062	0.000	0.002	10000	THOUSE	-00.002	<0.007	<0.001	-0.003	<0.003	<0.001	<0.000	<0.001	<0.001
Deliver	mg/l.	-	NO	MD	0.025	0.024	0.029	0.030	0.030	0000	0000	0000	2000	0.001	0001	0 000	<0000	20 001	<0.000	0.000	0.00	<0.0001
Day years	mg/L	MA	ND	UD	0.001	0.001	<0.001	<0.001	1000	1000	0.002	0.023	0.029	0.029	0.027	0.029	0.028	0.026	0.032	0.028	0.028	9000
Boton	mg/L	-	ON	QN	0.21	0.22	0.23	0.18	0.50	10000	70000	<0.001	<0.001	<0.001	<0.001	<0.001	100.00	c0.001	<0.001	<0.001	c0.000	20000
Cadmium	mg/L	0.005	QN	ON	<0.0001	-0.0001	10000	00000	0.000	0.17	0.18	0.17	0.22	0.18	6.19	0.23	0.2	0.18	0.17	0.16	0.44	010
Calolum	mg/L	1000	52	58	60	60	200001	TOOR	700000	00.0002	<0.0001	<0.0001	<0.0001	-0.0002	<0.0001	100000	<0.00001	<0.0001	<0.00001	200000	200000	0.15
Chromium	ma/L	0.00	ALC:	1	1000	00	20	23	45	43	47	90	48	46	45	45	36	1	TO THE PERSON NAMED IN	700000	100000	40.0001
Cobalt	mo/l.	3,0	1	OH.	20003	10000	<0.001	-0.001	<0.001	0.001	<0.001	<0.091	<0.001	<0.001	40.001	20000	0000	0000	944	41	40	41
Conner	Bom	1	ON	ON	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	AT DUB	TOTAL O	1000	40000	20000	2000	40,001	<0.001	<0.001	-0.001	<0.001
Iron	Tien I	-	ON	QN	0 003	0.003	<0.001	<0.001	<0.003	<0.001	<0.000	1000	1000	2000	1000	00,002	-0.001	<0.001	0.001	*:D0:03	<0.001	<0.001
- Poor	Organ.	0.3	ON	QN	0.06	0.05	200	<0.05	0.45	0.14	0.55	-0000	2000	70000	0000	0.001	<0.007	<0.001	0.015	<0.001	<0.001	10000
Disarr	mg/L	0.05	ON	MO	<0.000	<0.001	-0.001	00000	-0000	-0.000	0000	50000	0.52	<0.05	67.0	<0.05	QN	<0.05	0.42	<0.05	0.26	<0.05
Lichium	mg/L	0.075	QN	QN	0.044	0.037	0.042	0.030	0.038	0.046	0000	20000	1000	<0.001	<0.003	<0.001	<0.000	<0.001	<0.000	<0.000	<0.000	<0.001
Magnesium	mg/L	MA	UD ON	ON	7.1	7.4	99	62	46	46	04030	0.037	0.042	0.044	980'0	980.0	9.04	0.036	0.039	0.038	0.035	<0.012
lifanganese	mg/L	9.1	ON	ON	0.054	0.038	0.10	0.086	0 202	0000	40	40	35	51	25	55	52	54	45	43	46	AG
Mercury	mg/L	0.001	UD	ND	<0 npp1	<0.0001	<0.007	-0000	0.503	0.510	0.228	+	0.234	0.237	H	0.203	0.163	0.159	0.269	0.244	0 252	0000
Molybdenum	mg/L.	0.15*	ON	ND	0.003	0.002	0.002	0.000	2000	0.000	40.0002	+	-0.0002	<0.0001	_	<0.0001	<0.0003	<0.0001	<0.0001	<0.0001	1	20 0001
Nickel	mg/L	0.1	0.006	9000	0.005	0.004	0.004	0.005	1000	0,000	2000	+	2000	0.002	0.002	0.002	6.003	0.002	0.003	0.002	t	2000
Phosphorous as P	mgr	NA	<0.01	TO:0>	QN	QN	<0.01	1000	50.04	1000	0.000	0000	2000	0.005	0000	0.005	0.005	0000	0.005	0.005	t	0000
Potassium	mg.L	MA	6	6	11	o	10	0	1000	2000	2000	70'0	NO	GN	<0.01	JID OIL	0.00	ON	gu	<0.01	t	- Cong
Selenium	mg/L	0.01	<0.01	<0.01	0.02	001	70.07	1000	1000	0	20	6.	G1	00	10	cr.	6	111	8	1	-	
Silicon as SiO2	mg/L	NA	13,1	14,3	14.3	10 K	16.3	1000	1000	1000	<0.01	40.01	40.01	<0.01	10.00	<0.01	<0.03	<0.01	<0.01	1000	0000	20.00
Silver	mg/L	0.05	-0.001	0.001	0.001	0.001	1000	2000	14.5	14.2	16.7	+	34.5	14.8	15	15.4	16	15	35.7	1411	100	45.4
Surfur as 9	mg/L	N.A.	82	28.	101	943	1000	70007	190'0>	<0.001	<0.001	-0.001	<0.001	-0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1000	20000	10.0
Sulfate as SO4 2-	ma/L	400	247	355	100	CEP	200	60	62	88	75	85	80	80	84	75	25	22	200	TOWN.	1000	1000
Tin	Check.	MA	20102	2000	200	ON.	ON O	ND	QV	ON	<0.001	<0.001	<0.001	<0.091	<0.000	-00 000	-0.000	2000	000	200	8	92
Tilanium	mon!	MA	1000	7000	<0.001	<0.001	<0.001	<0.003	<0.001	<0.002	<0.01	<0.03	<0,03	<0.03	-00 m	4000	2000	TOTAL	CHANG	<0.007	<0.001	100.00
Variablem	1.61	No.	<0.03	10.0>	<0.01	<0.01	<0.01	<0.01	0.01	40,01	40.01	+	1000	1000	-0.01	70.07	0000	5000	<0.03	<0.03	<0.01	<0.01
7ino	TIBUT.	MA	:0.01	-:0 01	< 0.02	<0.03	<0.01	<0.03	<0.01	<0.01	H	+	+	2000	2000	70'05	<0.02	<0.01	-	<0.01	<0.01	100
Annual Samuel Sa	mg/L	2	-	<0.005	-0.005	<0.005	<0.005	-0.005	<0.005	-0 DOE	+	+	+	2000	c0.002	<0.005	0.000	900'0	6000	0.005	<0.005	<0.005
ND - Not Determined du	ue to labora	TOTA PITOR					-	-	Spineter 1	STANGS .			-	-	-			-	ŀ	-		

Teralba Quarry

TABLE B TERALBA QUARRY September 2013 - June 2014 Surface Water Analysis - EPL 536 Monitoring Point 5 (Discharge from Dam B)

Unik ph Unit					Name and Address of the Owner, where the Owner, which is the								-		VE 878		2	
Unit ph Unit				2013	•			1		1 Eshaunt	I Itto	March	ndw.	1	1	1	Paded	Discolund
Unik ph Unit	Occumber	phor	October	1	November	ber	ecem	per	January	Tota	d Total	Dissolved	_	_	_	Dissolved	n tofiltorod)	(Filtered)
Unit ph Unit	Total	Discolved	Total	Dissolved		-	_		Total Dissolved	(Unfiltered)	(Un	٢	(Unfiltered)	+	Unmikered	1	8.01	QN
ph Unit	-	_	(pa	(Filtered) (+	(pa	1	+		7.5	QN	7.9	No.	1150	NO	1120	ON
ph Unit	-	r			8.0	ND	/:/	9	NO DISCHARGE	NO DISCHARGE	1490	ON	000	Oil.	10	QN	<\$	QN
	1	NO MECHADOR	NO DISC	DISCHARGE	1600	QN	1860	NO.			\$	QN	19	No.	0 40	1000	0.19	<0.01
125	+	TOWN TO			25	25	9	9	-		<0.01	<0.01	0.86	0.01	0.48	NO	<0.01	QN
mg/L <50			1		0.67	0.02	0.10	<0.01			MOO 000	100.00	<0.01	QN	0.02			1000
Aliminism mg/L 0.2			1	1	2001	<0.01	<0.01	<0.01		1	GN	QN I	<0.001	<0.001	<0.001	<0.001	40.001	1000
No				1	2000	0000	0000	0.002			2000	coop	0.003	0.002	0.001	<0.001	<0.001	40.001
- Com				1	2000	0.002	0000	5000			0.002	0,000	3000	0000	0.032	0.023	0.030	0.028
y mg/L					0.006	0.005	0.000	2000		_	0.033	0.031	0.000	1000	1000	<0.001	<0.001	<0.001
1					0.027	0.023	0.034	2000			ON	<0.001	<0.001	2000	040	010	90'0	90'0
Barlum mg/L T					<0.001	<0.001	<0.001	<0.007			0.14	0.13	90.0	0.07	0.44	2000	100000	<0.0003
Baryllian mg/L NA			1		0.15	0.10	0.13	0.12		-	00001	0.0001	<0.001	<0.001	<0.0001	40,0001	200004	90
			1	1	100001	10000	<0.0001	<0.0001			Civ.	QN	24	21	31	26	34	2000
-	9			1	20000	32	25	34			2000	1000	0,000	<0.001	0.001	<0.001	0.001	<0.001
1	0,6				3	1000	100.00	<0.001			10000	0000	10000	<0.001	0.002	<0.001	<0.001	<0.001
100	8				<0.001	2000	10000	20000			0.010	0.003	0000	0000	0.002	<0.001	0.001	0.001
um mg/c					0.001	<0.002	2000	0000			0.001	7000	-	30.00	0.78	<0.05	0.26	<0.05
mg/L					0.002	<0.001	0.002	2000			0.29	90'0	0.92	2000	10000	<0.001	<0.001	<0.003
Copper mg/L	1				0.76	<0.05	0.23	00.00			<0.001	<0.001	40,001	2000	2000	0.012	0.012	0.011
mg/L			T		<0.001	<0.001	<0.001	<0.001			0.028	0.026	0.013	0.012	0.014	0.00	36	22
Load mg/L 0.05	9		I		0.026	0.026	0.031	0.028		1	48	45	25	23	32	67	2000	0000
mg/L 0	20,0			I	47	41	45	46		1	180	1.67	0.051	0.024	0.255	0.231	0.097	0000
Monopolium mg/L No	-				0000	<0.001	0.184	0.151		1	100001	F	<0.0003	<0.0001	<0.0001	<0.0001	20,000	0000
T	-				1000	<0.001	<0.001	<0.001		-	0000	t	9000	0.005	0.002	0.002	0.002	0.002
T	100				0000	0000	0,006	9000		1	2000	CN	0.004	0.003	900'0	0.004	0,003	0.007
with the same	99				0000	9000	0.004	0.004		1	200	GN	0.05	QN	20'0	QN	0.03	2
mo/L	-				0.000	1000	1000	<0.01			ON CO.	ON CON	y	7	9	9	9	٥
horous as D mo/L	A				40.05	100	00	7			ON .	9	1000	<0.01	<0.01	<0.01	<0.03	<0.01
	4				The same of	200	1000	<0.01			ND	ON COL	11.4	7.0	13.5	15.2	11.4	15.2
mod	JH.				40.01	40.04	200	22			ON	200	1000	10000	<0.001	<0.001	<0.001	<0.00
The state of the s	8				10.1	0.0	000	10000			QN	NO	20.00	000	5.4	47	90	46
as SiO2		-			<0.001	<0.001	<0.002	40.00			QN	QN	48	25				L
Silver mg/L 0.0	20	-	-		76	71	09	99							1	1000	1000	<0.001
Sulfuras S mg/L N	NA	-	-								GN	QN	<0.001	<0.001	<0.003	SOUNT	1000	100
Od 2- mg/L	00		-		GN	QN	GN	QN		1	GN	QN	<0.01	<0.01	0.01	<0.01	<0.04	000
mg/L	MA		-		100.00	<0.001	<0.001	<0.001		1	GN	QN	<0.01	<0.01	<0.01	<0.01	10.02	2000
nium mg/L	NA		-		100	<0.01	<0.01	<0.01		1	GN	QN	9000	<0.005	0.007	<0.005	40,003	2000
ma/L	IA I		-		1000	<0.01	<0.01	<0.01			-							
lion.	5				50.02	2000												

Page 1 of 4

Report No. 559/38 Appendix 7

TABLE C
TERALBA QUARRY
September 2013 – June 2014 Comparative Surface Water Analyses (EPA Routes 4 and 5)

Analytes	Unit	Guidelines	Sentember 20	Ser 2012	Complement of	1			EPL Point 4	11.4	EPL Point 4	int 4	Q IQH	FDI Doint E
			711000		September 2013	er 2013	October 2013	r 2013	October 2013	2013	November 2013	er 2013	Novemb	November 2042
			Total (Unfiltered)	Dissolved (Filtered)	Total	Dissolved	Total			Dissolved	Total	Dissofved	Total	Dissolved
PH	ph Unit	6.5 to 8.5 units	7.7	ND	NO DIE	NO DISCUADOR	(Unfiltered)	<u>्र</u>	(Unfiltered)	(Filtered)	(Unfiltered)	(Filtered)	(Unfiltered)	
Conductivity	mS/cm	125 - 2200 ^b	2180	ON	200	שאמני	7.8	ND	NO DISCHARGE	HARGE	7.3	QN	8.0	
TSS	mg/L	<50	<5	ON CAN			2410	ND			2210	QN	1600	S
Aluminium	mg/L	0.2	GN	GN			8	ND			₽	QN	25	S S
Ammonia as N	mg/L	0.01	0.03	2000			0.04	0.01			0.05	<0.01	0.67	200
Antimony	ma/L	AM	200	0.00			QN	ND			<0.01	<0.01	1007	0.02
Arsenic	ma/L	0.05	ON CIN	AN CAN		1	<0.001	<0.001			<0.001	<0.00	1000	10.02
Barium	mg/L	-	ON	ON CONTRACT			0.002	0.001			0.003	0.001	2000	0.002
Beryllium	mg/L	NA	GN	ON GN		1	0.025	0.024			0.029	0.030	0.027	0.000
Boron	ma/L	-	9	ON ON			<0.001	0.001	-		<0.001	<0.001	70001	0.023
Cadmium	ma/l	0.005	2 5	ON S			0.21	0.22	-		0.73	0.18	1000	50.00T
Calcium	ma/L	1000°	5 C	ON L			<0.0001	<0.0001			<0.0001	<0.0001	200007	0.10
Chromium	ma/l	0.05	70	200			09	9	_		56	53	200	70000
Cobalt	mail	1000	ON S	QV :			<0.001	<0.001		T	<0.001	1000	20000	17
Copper	madil		GN.	QN			<0.001	<0.001			1000	10000	20:001	<0.001
ron	mail		ON S	QN :			0.003	0.001		İ	×00.001	70.00	0.001	<0.001
Lead	ll	0.00	ON S	QN			90.0	0.05		1	2000	7000	0.002	<0.001
Whitem	No.	0000	ON	QN			<0.001	<0.001		T	10007	20:02	0/.0	<0.05
- Contraction	III SIL	0.075	QN	ON			0.044	0.037	+	t	20.001	<0.001	<0.001	<0.001
wagnesium	mg/L	NA	ND	QN			7.1	1000	t	1	0.042	0.039	0.026	0.026
Wanganese	mg/L	0.1	QN	QN			7500	4/	1	1	99	62	47	41
Mercury	mg/L	0.001	QN	ND	T	T	0.004	0.038	1	1	0.12	0.086	0.079	<0.001
Molybdenum	mg/L	0.15°	QN	QN	T	t	70000	70000	1	1	<0.001	<0.001	<0.001	<0.001
Nickel	mg/L	0.1	9000	9000		t	0.003	0.002	1	1	0.002	0.002	600.0	0.009
Phosphorous as P	mg/L	NA	<0.01	<0.01	T	T	500.0	0.004			0.004	0.005	0.008	0.006
Potassium	mg/L	NA	6	0	+	\dagger	P. S	QN			<0.01	<0.01	<0.01	<0.01
Selenium	mg/L	0.01	<0.01	<0.03	\dagger	1	113	6			10	00	10	10
Silicon as SiO2	mg/L	AN	14.1	14.5	1	1	0.02	0.01			<0.01	<0.01	<0.01	<0.01
Silver	mg/L	0.05	1000	24.0	+	1	14.4	14.8		_	15.3	14.7	10.1	2 2
Sulfur as S	ma/l.	ØZ.	0000	0.001	1	1	0.001	0.001			<0.001	0.001	<0.000	10000
Sulfate as SO4 2-	ma/l	400	747	000	1	1	101	113			94	79	76	71
	ma/L	NA	+	967	+	+	+	QN	_		ON	QN	GN	T S
Titanium	mall	AN	+	40.001	+	1	-	<0.001			<0.001	<0.001	S	ND
Vanadium	- Jyou	NA	70.07	40.01	1	1	<0.01	<0.01			\vdash	<0.01	<0.001	20007
	Dom	+	+	ZO:07	1		<0.01	<0.01			1000			10000
	18:										10.05			1000

Report No. 559/38 Appendix 7

7

Page 2 of 4

TABLE C (Cont'd)
TERALBA QUARRY
September 2013 – June 2014 Comparative Surface Water Analyses (EPA Routes 4 and 5)

										F F F OO .	Labrican 2044	1 2044	February 2014	2014
Analytes	Unit	Guidelines	December 2013	er 2013	December 2013	er 2013	January 2014	/2014	January 2014	4014	Bridge	1		
			Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved (Filtered)	Total (Unfiltered)	Dissolved (Filtered)	Total (Unfiltered)	Dissolved (Filtered)
			(Unfiltered)	(Filtered)	(Dulliered)	(Lillered)	יייייייייייייייייייייייייייייייייייייי	ND	NO DISCHARGE	HARGE	7.48	QN	NO DISCHARGE	HARGE
PH	ph Unit	ph Unit 6.5 to 8.5 units	7.1	ON	/:/	ON		Q.			2170	CN		
Conductivity	ms/cm	125 - 2200 ^b	1890	ND	1660	DN	1940	QN			24/0	2		
Tee	ll mar	<50	26	QN	9	ND	9	ON			0	9		
Aluminium	l) Dua	0.0	0.11	<0.01	0.10	<0.01	0.14	<0.01			0.04	<0.01		
Manning and a second	1000	0.04	Z0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	<0.01		
Ammonia as N	mg/L	MA	70.00	<0.001	0.001	0.002	<0.001	<0.001			<0.001	<0.001		
Amilmony	11811	300	2000	0000	0.004	0.005	0.003	<0.001			0.002	0.001		
Arsenic	mg/L	0.00	0.002	0000	0.034	0.037	0.031	0.028			0.029	0.029		
Barium	mg/L		0,030	0.000	100.00	10007	<0.001	<0.001			<0.001	<0.001		
Beryllium	mg/L	AN	100.00	<0.001	20.00	2000	0.10	0.17			0.22	0.18		
Boron	mg/L	-	0.17	0.17	0.15	0.12	0.10	0000			<0.0001	<0.0001		
Cadmium	mg/L	0.005	<0.0001	<0.0001	<0.0001	<0.0001	CO.UOT	20.0001			No.	46		
Calcium	mg/L	1000°	43	43	35	34	47	46			4000	1000		
Chromium	ma/L	0.05	<0.001	0.001	<0.001	<0.001	<0.001	<0.001			<0.001	\$0.00T		
Cobalt	mall	1000	0.001	<0.001	<0.001	<0.001	<0.001	<0.001			0.001	<0.001		
Oppor	l/om	-	<0.001	<0.001	0.002	0.001	<0.001	0.001			0.001	<0.001		
Copper	1/000	0.3	0.45	0.13	0.21	90.0	0.33	<0.05			0.32	<0.05		
Holl	a libour	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			<0.001	<0.001		
Lead	I Pom	0.0750	0.048	0.045	0.031	0.028	0.038	0.037			0.042	0.044		
Limium	III SVE	0.000	200	AG	AE	46	46	54			55	51		
Magnesium	mg/L	NA	40	40	2104	0.151	0.223	0.217			0.234	0.237		
Manganese	mg/L	0.1	0.303	0.510	0.104	0.131	10000	<0.0001			<0.0001	<0.0001		
Mercury	mg/L	0.001	<0.001	70000	20.001	10000	2000	0000			0.002	0.002		
Molybdenum	mg/L	0.15°	0.003	0.003	0.000	0.000	0.002	0.000			0.004	0.005		
Nickel	mg/L	0.1	0.004	0.004	0.004	0.004	5000	50.0			QN	2		
Phosphorous as P	mg/L	NA	<0.01	<0.01	<0.01	×0.01	0.02	20.00			0	00		
Potassium	mg/L	NA	7	9	00		0	2000			<0.01	<0.01		
Selenium	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	50.03			14.5	14.8		
Silicon as SiO2	mg/l-	NA	14.5	14.2	8.6	8.2	16./	14.0			100.07	<0.00		
Silver	mg/L	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	20.001			00	OS		
Sulfur as S	mg/L	AN	65	89	9	88	75	82			0000	2000		
Sulfate as SO4 2-	mg/L	400	QN	ND	DN	9	<0.001	<0.001			50.00T	7007		
Tin	mg/L	NA	<0.001	<0.001	QN	QN	<0.01	<0.01			50.01	70.07		
Titanium	mg/L	NA	0.01	<0.01	<0.001	<0.001	<0.01	<0.01			10.00	10.05 FOOR		
Vanadium	ma/L	NA	<0.01	<0.01	<0.01	<0.01	9000	<0.005			20000	20000		
rangalani	-	-				-	-							

Report No. 559/38 Appendix 7

Page 3 of 4

TABLE C (Cont'd)
TERALBA QUARRY
September 2013 – June 2014 Comparative Surface Water Analyses (EPA Routes 4 and 5)

Amoliston	1		EPL Point 4	int 4	EPL Point 5	oint 5	EPL Point 4	int 4	EPL Point 5	oint 5	EPL Point 4	int 4	EPL Point 5	int 5
Analytes	and a	Guidelines	March 2014	2014	March 2014	2014	April 2014	2014	April 2014	2014	May 2014	1014	May 2014	1014
			Total (Unfiltered)	Dissolved (Filtered)	Total (Unfiltered)	Dissolved (Filtered)	Total	Dissolved (Filtered)	Total	Dissolved	Total	Dissolved	Total	Dissolved
F	ph Unit	6.5 to 8.5 units	7.32	1	7.5		734	ND	7.0	I we see	(outlinear)	(Dalania)	Commercial	(Filtered)
Conductivity	mS/cm	125 - 2200 ^b	2100	GN	1490	S S	0100	2 2	6.7	ON C	1.54	ON I	7.5	QN
TSS	mail	<50	2	CN CN	2004	QV QV	0102	ON CIT	834	QN !	1850	QN	1150	ND
Aluminium	l) Du	000	000	200	2 3	ON I	0	aND	I9	QN	10	QN	10	ND
Ammonlo oo M	181	0.2	80.0	<0.01	<0.01	<0.01	0.02	<0.01	0.86	0.01	0.07	<0.01	0.48	<0.01
William as N	mg/L	0.01	0.03	QN	<0.001	<0.001	<0.01	ND	<0.01	QN	ND	0.02	0.02	QN
Antimony	mg/L	AN	<0.001	<0.001	ON	ND	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001
Arsenic	mg/L	0.05	0.001	0.001	0.002	0.002	<0.001	<0.001	0.003	0.002	<0.001	0.002	0.001	<0.001
Barium	mg/L	-	0.027	0.029	0.033	0.031	0.028	0.026	0.025	0.020	0.032	0.078	0.032	0.028
Beryllium	mg/L	NA	<0.001	<0.001	ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	CO 001	2000
Boron	mg/L	-	0.19	0.23	0.14	0.18	0.2	0.18	90.0	0.07	0.17	0.15	0.11	0.10
Cadmium	mg/L	0.005	<0.0001	<0.0001	0.0001	0.0001	<0.0001	<0.0001	<0.001	<0.001	<0.0001	<0.0001	<0.0001	<0.0001
Calcium	mg/L	1000°	45	45	ND	ND	46	46	24	21	44	41	31	26
Chromium	mg/L	0.05	<0.001	<0.001	<0.001	<0.001	900'0	<0.001	0.004	<0.001	<0.001	<0.001	0.001	1000
Cobalt	mg/L	1000	<0.001	<0.001	0.010	600.0	<0.001	<0.001	<0.001	<0.001	0.001	<0.00	0 00 0	70007
Copper	mg/L	-	0.001	0.001	0.001	0.001	<0.001	<0.001	0.002	0.001	0.015	<0.001	0.00	Z0.02
Iron	mg/L	0.3	0.29	<0.05	0.29	90.0	QN	<0.05	0.92	<0.05	0.42	<0.05	0.78	40 05
Lead	mg/L	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
Lithium	mg/L	0.075	9:000	0.036	0.028	0.026	0.04	0.036	0.013	0.012	0.039	0.038	0.014	0.013
Magnesium	mg/L	NA	56	55	48	48	52	54	25	23	45	43	32	29
Manganese	mg/L	0.1	0.194	0.203	1.80	1.67	0.161	0.159	0.051	0.024	0.269	0.244	0.255	0.731
Mercury	mg/L	0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	0.15°	0.002	0.002	0.003	0.002	0.003	0.002	0.006	0.005	0.003	0.002	0.002	0.002
Nickel	mg/L	0.1	0.005	0.005	QN	ON	0.005	0.005	0.004	0.003	0.005	0.005	900'0	0.004
Prosphorous as P	mg/L	NA	<0.01	Q.	QN	QN	0.02	ND	90.0	QN	DN	<0.01	0.07	ND
Potassium	mg/L	NA	10	6	ND	ND	9	11	9	7	00	7	9	9
Selenium	mg/L	0.01	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Silicon as SiO2	mg/L	NA	15	15.4	ND	QN	16	15	11.4	7.4	15.7	14.9	18.5	15.2
Silver	mg/L	0.05	<0.001	<0.001	ND	ND	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulfur as S	mg/L	NA	84	75	ND	ND	85	72	49	39	99	62	54	47
Sulfate as SO4 2-	mg/L	400	<0.001	<0.001			<0.001	<0.001			<0.001	<0.001		T
Tin	mg/L	NA	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	<0.001
Titanium	mg/L	NA	<0.01	<0.01	ND	ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01
Vanadium	mg/L	NA	<0.005	<0.005	ON	- QN	0.006	9000	<0.01	<0.01	600.0	0.005	<0.01	<0.01
Zinc	mg/L	5			ON	ND		-	900'0	<0.005			0.007	<0.005

--

Page 4 of 4

Teralba Quarry

TABLE C (Cont'd)
TERALBA QUARRY
September 2013 – June 2014 Comparative Surface Water Analyses (EPA Routes 4 and 5)

1000	Imit	Guidelines	June 2014	June 2014	June 2014	2014
Allalytes			Total	Dissolved	Total	Dissolved
			(Unfiltered)	(Filtered)	(Unfiltered)	(Filtered)
70	ph Unit	6.5 to 8.5 units	7.79	ND	8.01	QN
Conductivity	uS/cm	125 - 2200 ^b	1360	ND	1120	2
TEC	ma/L	<50	9	ND	\$	QN
Alterialism	ma/l	0.2	0.07	<0.01	0.19	<0.01
Auminium Ammonia se N	ma/L	0.01	<0.01	QN	<0.01	2
difficulting as is	l mag	A'N	<0.001	<0.001	<0.001	<0.001
Antimony	Dom	0.05	0.002	<0.001	<0.001	<0.001
Arsenic	light.	-	0.028	0.026	0.030	0.028
Sarium	Dom.	AN	<0.001	<0.001	<0.001	<0.001
Seryillam	1/000	-	0.14	0.13	90.0	90.0
Boron	Ill gran	0 005	<0.0001	<0.0001	<0.0001	<0.0001
Cadmium	1,68	4000°	40	41	34	30
Calcium	18	200	<0.001	<0.001	0.001	<0.001
Chromium	mg/L	1000	<0.001	<0.001	<0.001	<0.001
Cobait	TING IN	-	<0.001	<0.001	0.001	0.001
Copper	TIGHT.	. 0	0.26	<0.05	0.26	<0.05
ron	I John	0.05	<0.001	<0.001	<0.001	<0.001
Lead	N E	0.075	0.035	<0.012	0.012	0.011
Lithium	1/6/11	AN AN	46	45	35	32
Magnesium	TI BYL		0.252	0.090	0,097	0.090
Manganese	mg/L	0000	<0.0001	<0.0001	<0.0001	<0.0001
Mercury	TIGHT.	0.480	0.002	0.002	0.002	0.002
Molybdenum	119/1	200	0 004	0.004	0.003	0.002
1	mg/r	- N	<0.01	ND	0.03	QN
Phosphorous as P	TIGHT.	AN	7	1~	٥	9
Potassium	TIGHT.	0.01	<0.01	<0.01	<0.01	<0.01
Selenium	180	NA	15	151	11.4	15.2
98	100	-	<0.001	<0.001	<0.001	<0.001
	118111	1	89	65	20	46
	mg/L	1	<0.001	<0.001		
Sulfate as 504 2-	III July	1	<0.01	<0.01	<0.001	<0.001
TIM	The state of	1	<0.01	<0.01	<0.01	<0.01
Iranium	100	-	<0.005	<0.005	_	<0.01
Vanadium		1			<0.005	<0.005

2014 ANNUAL REVIEW

Report No. 559/38 Appendix 7

METROMIX PTY LTD Teralba Quarry

Mr B. Sanderson Metromix Pty Ltd Rhondda Road TERALBA NSW 2284

8 Rhondda Road Teralba NSW 2284

Dear Mr Sanderson

Re: Noise Monitoring for Teralba Quarry

I am writing to agree with your proposition that Metromix does not need to continue to monitor noise at our residence at 8 Rhondda Road. I do, however, reserve the right to request the reinstatement of noise monitoring in the event that I consider noise monitoring is required.

Yours sincerely

Dated 25/07/2014
Gianpiero
Goniglio

Teralba Quarry

2014 ANNUAL REVIEW Report No. 559/38 Appendix 7

Mr B. Sanderson Metromix Pty Ltd Rhondda Road TERALBA NSW 2284 63 Victoria Avenue Teralba NSW 2284

Dear Mr Sanderson

Re: Noise Monitoring for Teralba Quarry

I am writing to agree with your proposition that Metromix does not need to continue to monitor noise at our residence at 63 Victoria Avenue. I do, however, reserve the right to request the reinstatement of noise monitoring in the event that I consider noise monitoring is required.

Yours sincerely

DAME BLACK

Dated 1 Blad 25/7/14